

Accurate wireless temperature measurements using passive SAW sensors and a frequency modulation interrogation approach

Sylvain Ballandras^{1,2}, Gilles Martin¹, Jean-Michel Friedt², Christophe Droit², Bruno François¹

> ¹FEMTO-ST, UMR 6174 CNRS-UFC-ENSMM-UTBM, Besançon France

²SENSeOR SAS, Sophia-Antipolis, TEMIS Besançon, France

hernique et Optique

Summary

- Forewords
- Resonator-based sensors
 - Typical feature of a SAW resonator
 - Practical configurations

• Interrogation system

- Basic architectures
- A software-controlled general purpose platform
- Accuracy issues
- « Phase-locking » approaches
- Ultimate resolution
- Active oscillator-based measurement system

Conclusion

Wireless interrogation of passive sensors

- First paper by X.Bao, Burkhard, Varadans', describes the basic idea in 1987
- Siemens engaged work in that field, yielding first patents in 1995 (source Esp@cenet)
- Transense enters the competition in 2000 and propose advanced strategies for interrogating resonator-based sensor for pressure and torque (2001, source Esp@cenet)
- CTR, SENSeOR, senTec-Elektronik, RSSI, Sengenuity, Sensor Technology and many other actors are now contributing to the activity

Two basic approaches

Resonators (IIF)

Tek M Pos: 20.00.us Stop Switching Emission Signal Signal Digitisation Receive Signal Signal Signal CH1 20.0mV CH2 500mV M 5.00.us CH1 20.0mV CH2 500mV M 5.00.us

(Courtesy of SENSeOR)

(Courtesy of V. Plesski, GVR)

SAW resonators

Single-port resonator

ensmm

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Two-port resonator

Suzeptance jen S

tbm

UNIVERSITÉ DE FRANCHE-COMTÉ

Various SAWR designs

Hiccup resonator

Tapered synchronous resonator

- Synchronous resonators operate at the edge of the stopband
- Tapering the transducer reduces lateral mode contributions
- Asynchronous resonators (a/p or p) force resonance within the stopband
- Adding an extra $\lambda/4$ propagation path yields middle-of-the-band resonance for non directive resonators
- Combining all these features yields resonator optimization

Typical response

SAW

Sensor architectures

2 SAW on Chip – 2 chips in a package

RFIDEBLIC

SENSOR MAGAZIN

CENTRE NATIONA

(a) SAW pressure and temperature sensor 0-10 bars (8x4mm²)

(b) Cross section of the micro-machined circular membrane

CENTRE NATIONA

(c) S11 modulus variation for the SAW pressure and temperature sensor when overpressure varies from 0 to 5 bars

SAW temperature-pressure sensor

SAW in ISM band : 433.05 < *f* < 434.79 MHz

Pressure range : 0 - 20 Bars controlled by the membrane dimensions

RNOT MTO-Innovation

CENTRE NATIONAL DE LA RECHERCHE

Electronics bloc diagram

A software-controlled system allowing for various interrogation strategy in the 434 MHz – centered ISM band Micro-controllerr : AduC 7026, ARM7-core-based technology

Electronique, Mécanique, Thermique et Optique

Franche-Comfé,

utbm

tbm

Improving the accuracy

The presented principle allows for temperature measurement by simply detecting the curve maximas using a fix scanning comb approach

- Advantage :
 - Process very easy to implement
- Flaws :
 - Inaccuracy due to the lack of coincidence of the measured max and the actual resonance peak
 - Delay of spectrum scan : 128×(Q/π)×τ~ 5,76ms

A first improvement approach : fitting the max by a quadratic function and defining the actual max value solving a second degree polynomia

Electronique, Mécanique, Thermique et Optique

Parabolic fit : principle

Fundaments

SAW conductance near the resonance well represented by a Lorentzian law A parabolic function reliably fits the conductance max The fit process can be fastly achieved using integer-based coding Computation needs a minimum calculation ressources

$$f_0 = f_2 + \frac{\Delta f}{2} \times \frac{(s_1 - s_3)}{(s_1 + s_3 - 2 \times s_2)}$$

Application

Application of the 3-point method to a 2-resonator temperature sensor

tbm

Tracking mode

Stability – Accuracy

5.76 ms for intialization 60 µs/point – 360µs for 2 resonances An accuracy of 100 Hz is achieved for only 1 measurement The stability increases along measurement delay This reduces to 3 Hz when averaging 1000 samples

CENTRE NATIONA

Frequency modulation strategy

SENSOR MAGAZIN

tbm

IVERSITÉ

Scanning the contribution at modulation frequency ω

2KHz 4KHz 2500 2000 Amplitude 1500 1000 500 0 4.331e+08 4.332e+08 4.333e+08 4.335e+08 4.337e+08 4.334e+08 4.336e+08

Premier releve a 2 et 4 Khz

Efficiency of the approach depends on the amplitude and frequency of the modulation

Frequence en MHz*100

Exploitation of the approach for phase-locking

Stability in wireless and wired configurations

tbm

Powered solutions

Test-Oscillator

anche-Comté,

CENTRE NATIONA

Colpitts-based oscillator

RFIDEBLIC

SENSOR MAGAZIN

SAW

FPGA-based Counter

SENSOR MAGAZIN

UNIVERSITÉ

tbm

Final implementation

Oscillator + FPGA counter + Zigbee emitter

Zigbee Receiver

Interrogation distance > 30 m have been tested, 100 m achievable in theory

Conclusions

Development of new strategies for wireless interrogation

- Using a software-based electronics allows for implementing numerous approaches
- Fix-comb approaches allow for accuracy in the 500 Hz at 434 MHz
- 3-point approaches yields improved frequency resolution (100 Hz and less when averaging) as well as the system passband (measurement delay ~200µs for a 2-resonator sensor)
- Phase-locking has been developed for reaching ultimate sensitivity provided the sensor is continuously interrogeable but needs longer delays
- Wired-powered solutions allows very large distance with coding

Perspectives

Applications challenges

- In-motion measurements
 - Reaching such accuracy for sensors fixed to moving parts with very high linear/rotation velocities

Large band-width operation

- For monitoring fast processes such as stress evolution at frequencies above 5 kHz
- Ultimate operation conditions
 - Maintaining the obtained resolution when the reader faces extreme temperature/vibration/magnetic environments

